Tsunami Inundation Modeling & Mapping for Guam Southern Shores: Umatac, Merizo, Inarajan, and Talofofo

Kwok Fai Cheung, PhD, PE Professor of Ocean and Resources Engineering University of Hawaii at Manoa

Guam Homeland Security – Office of Civil Defense October 27, 2023

Background

National Tsunami Hazard Mitigation ProgramNOAA, FEMA, USGS, and 28 US states and territories

Activities under Hazard Assessment

- Tsunami inundation mapping
- Maritime hazard mapping
- Sediment & debris modeling

Maritime Hazard Mapping

- Three-year project: FY16-18
- Apra Harbor, Agana Boat Basin, and Agat Marina and adjacent areas
- After similar effort with USCG Sector Honolulu
 - In-harbor hazard maps for advisory-level tsunamis
 - Offshore hazard maps for probable maximum tsunamis

Inundation Mapping (FY20-21)

- Southern shorelines including Umatac, Merizo, Inarajan, and Talofofo
- High-resolution modeling for probable maximum tsunamis from critical sources to Guam.

https://www.pacioos.hawaii.edu/data/search-results/?text=neowave&keyword=guam

Prior Modeling Work

Tsunami Hazard Assessment for Guam

- NOAA Pacific Marine Environmental Lab in 2010
- Low-resolution tsunami modeling for hypothetical Mw 8.5 and 9.0 earthquakes to identify critical sources
- Mariana, Philippine, Nankai, Ryukyu, New Guinea, Manus, and Kuril Subduction zones
- High-res modeling for Apra Harbor, Pago, Agana, and Inarajan Bays
- Evacuation Maps by Guam DHS
- Aggregation of high-res results
- Extrapolation of low-res results

Evacuation Map Updates

Why update?

- Arbitrarily selected earthquake magnitudes not representative of source seismicity
- Extrapolation of low-res model results lacking physical basis
- Newly developed digital elevation model by NOAA NCEI
- Recent advances in modeling for tropical island environment

Source Scenarios

- Global Earthquake Model (GEM) initiated by insurance industry after the 2011 Tohoku earthquake and tsunami
- Preferred maximum Mw agreed by notable seismologists
- Inundation maps based on preferred maximum earthquakes
- Refuge locations based on preferred max Mw + 0.2 (2 x energy)

Tsunami Source		Largest Recorded Earthquake (year)	GEM Preferred Max Mw	GEM Preferred Max Mw + 0.2
Local	Mariana	M 8.0 (1909)	8.3	8.5
North	Kuril	Mw 9.0 (1952)	9.3	9.5
Northwest	Nankai	Ms 8.6 (887)	8.7	8.9
West	Philippine	Ms 8.3 (1924)	8.5	8.7
South	New Guinea	Mw 8.2 (1996)	8.8	9.0

The GEM Faulted Earth Subduction Interface Characterisation Project

Report produced in the context of the GEM Faulted Earth Global Component

Version 2.0 - April 2015

K. Berryman¹, L. Wallace², G. Hayes³, P. Bird⁴, K. Wang⁵, R. Basili⁶,
 T. Lay⁷, M. Pagani⁸, R. Stein³, T. Sagiya⁹, C. Rubin¹⁰, S. Barreintos¹¹, C.
 Kreemer¹², N. Litchfield¹, M. Stirling¹, K. Gledhill¹, K. Haller³, C. Costa¹³
 ¹ GNS Science, New Zealand² University of Texas, Institute for Geophysics³
 USGS⁴ UCLA⁵ Canada Geological Survey⁶ INGV⁷ University of California Santa
 Cruz⁸ GEM Foundation⁹ Nagoya University, Japan¹⁰ Earth Observatory,
 Singapore¹¹ University of Chile¹² University of Nevada¹³ University of San Luis,
 Argentina

Tsunami Modeing

Nested grid systems

- Four levels of two-way nested grids
- Telescoping from western Pacific to Umatac-Merizo and Inarajan-Talofofo
- **Digital Elevation Model**
- Multibeam bathymetry at 5 and 60 m resolution down to 400 and 3500 m depth from U Hawaii
- Integrated LiDAR topography and bathymetry at 3 m resolution from U Colorado (NOAA CUDEM)

Tsunami Model: NEOWAVE

- Developed at the University of Hawaii for tropical island and reef environments
- Ranked #1 in 2009 National Science Foundation Benchmarking
- Ranked #1 in 2015 NTHMP
 Benchmarking (2D models)
- Validated with measurements from more than 10 major tsunamis since 2009

Tsunami Generated by Mariana Mw 8.3 Earthquake (GEM Preferred Maximum)

Tsunami Generated by Mariana Mw 8.3 Earthquake (GEM Preferred Maximum Computed at MHHW Level)

Tsunami Generated by Mariana Mw 8.3 Earthquake

- GEM Preferred Maximum
- Computed at MHHW Level

34°N

ofofo Bay

Existing Evacuation and Updated (Local Tsunami) Inundation Maps

Maximum Flow Depth (m)

Maximum Flow Depth (m)

Maximum Flow Depth (m)

Maximum Flow Depth (m)

Tsunami Generated by Philippine Mw 8.5 Earthquake (GEM Preferred Maximum)

Tsunami Generated by Philippine Mw 8.5 Earthquake (GEM Preferred Maximum Computed at MHHW Level)

Tsunami Generated by Philippine Mw 8.5 Earthquake

- GEM Preferred Maximum
- Computed at MHHW Level

alofofo Bay

Existing Evacuation and Updated (Distant Tsunami) Inundation Maps

Maximum Flow Depth (m)

Conclusions and Recommendations

Existing evaluation maps

- Too conservative for most locations due to arbitrarily selected Mw and extrapolation of low resolution results
- Underestimation of impacts on the south side especially Coco Island

Mariana tsunamis

- Arrival time of ~10 min at southeast shore with 8~16 m runup (preferred max) and insufficient time for warning
- Public education to ensure self-evacuation at nature's warning signs

Distant tsunamis

 Arrival time of ~2.5 hr from the nearest Philippine and New Guinea subduction zones with 4~7 m runup (preferred max)

Two-zone evacuation maps

- Hawaii for Aleutian Mw 9.0 or greater and all other subduction zone earthquakes
- Oregon for local and distant tsunami
- Option for Guam

